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Exact Expressions for Curved Characteristics

Behind Strong Blast Waves

0. Laporte and T. S. Chang

I. Introduction

Blast waves are produced in gaseous media due to the sudden deposition
of large amounts of energy in relatively small regions. The propagation
of a point-source blast wave info an ideal gas, whose initial pressure is
assumed to be negligibly low, is known to be self;similar. This property
was first deduced by Taylor:L using dimensional arguments. A brief deriva-
tion of this result based on invariant theorems of continuous group of
transformations is given in the appendix. Clésed form solutions describing
the flow variables in the nonisentropic region behind such a blas% wave in
n(= 1, 2, 3) dimensions were obtained independently by von Neumann2 and
Sedovs, The reflection of strong blast waves had been discussed in an
earlier paperu by the authors.

Since the self-similar solution is a solution with stratified entropy -

in fact, the only exact solution of this type known and therefore interest-

%

ing pedagogically - there are three sets of characteristic curves. The
purpose of this paper is to report the interesting result that these three
families of curved characteristics also can be represented in closed form,

and remarkably still in terms of elementary functions.

%
See, e.g., Courant §& Friedrichss.



As far as the authors know, these expressions represent the only known
closed form solutions of three sets of curved characteristics in a non-

isentropic flow region.

II. Self-Similar Solution

Using the notations of Chang & Laporteqq the flow variables behind

a self-similar blast wave may be expressed in dimensionless forms as follows:

f= ﬁ/u' = Ay s
Azn A2+
g = p/p' = (Alu) [As (1 - u/AZ)]
2A6
- [A; (1 - Ag0)/(A; - A)] s
A, A'q-l
h = p/p' = [Ag (yb/a, - 1] [A3 (1 - ﬁ/AZ)]
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In these equatioms,
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is the similarity parameter, and (u, p, p) are the velocity, préssure, and
density in the nonisentropic flow region behind the blast wave, respectively.

Furthermore,
4 = ut/r (3)

is a dimensionless velocity, t is the elapsed time, r and R respectively
are the radial distance and shock radius measured from the point of explosion.

The constants Al’ A ...,A9 are defined in terms of the adiabatic index ¥y

2!

and n as follows:
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where n = 1 for a planar wave, = 2 for a cylindrical wave, and = 3 for a
spherical wave. The flow velocity u', fluid pressure p', the fluid
density p', just behind the blast wave at r = R (or y = 1) are expressible

in terms of the instantaneous shock speed U, and the fluid demnsity Po ahead



of the shock wave (i.e., the initial density) by the familiar strong shock

P

formulae as follows:
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Following an argument due to Taylorl or the group-theoretical discus-
sion given in the appendix, the shock radius R may be expressed as a

function of the elapsed time t as follows:

)l/(2 + 1) té/(2 + n)

R =K (B /0, : (6)

where'BO is the energy released per unit area for a planar wave, per unit
length for a cylindrical wave, and the total energy released for a spherical

wave, and Kn is a constant determined by the energy integral

S A n-1..2 2_ P
Eo ey J pr (v + p) dr . (7

From Eq. (6), the shock speed U can be calculated. The expressions for
f, g, and h, given in Egs. (1), can be regarded as functions of the similarity

parameter y which has the convenient range of 0 g y s 1.

III. Particle Lines

It is known that the basic equations governing the nonisentropic flow
behind a propagating blast wave admit three distinct characteristic directions

in the r-t plane given by

dr/dt = u, u (8)
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where a =.(Yp/p)l/2 is the local adiabatic speed of sound. The first
characteristic direction given by Eq. (8) coincides with the local particle
velocity and the family of characteristics are therefore particle lines.
This direction corresponds to the speéd of propagation of entropy distur-
bances. The other two éharacteristic directions of Eq. (8) correspond to
the local speeds of propagation of pressure, density, or velocity distur-
bances.

Consider first the (u)-characteristics or particle lines. According
to its definition and the self-similar solution, Egs. (1)-(7), it may be

easily deduced that along a (u)-characteristic,
deft = 2A U Gy(Q)/(y + 1) , (9)

where y(1) is given by Eq. (2). The shock speed U can be evaluated from

Eq. (6) as follows:

1/(2 + n) t—n/(? + n)

(e
1t

[2Kn/(2 + n)] (Eo/po)

n

[2/(2 + n)] (R/t) . (10)

But, from the definition of the similarity parameter, Eq. (2), and
the expression for the shock radius, Eq. (6), it can be shown that, in

general,

_ 1/(2 + n) _-n/(2 + n)
dr/dt = K (Eo/po) t

- [2y/(2 + n) + t dy/dt] . (11)
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where

fore, from Egs. (2) and (9)-(11), it is found that,

_dlogy da
da 4 - 2/(2 +n)

a particle line. But, from Eq. (2),

dlogy _ (y-1)1%/2+[u-2/(2+mn)ll0 - 2/y(2 + n)]
dt al2/y(2 + n) - 4I[(2 - n + ny) &/2 - 1]

fore,

d log t = F(u) aa

3

~ 1 d log vy
F = =
W= ey @

is a rational function of G and Eq. (14) can be integrated in terms of

elementary functions. The result is

where
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By = (2 + n)(ny? - 2ny +n + 2y - 2)[n(2 - y)(ny - n + 2)17t . B, -1

(17)

and t = t/to is a dimensionless time normalized with respect to some con-
venient time scale to'

To complete the solution for the particle lines, an expression among
(r, t, 0) is obtained from Egs. (2) and (6). In dimensionless form, this

expression becomes,

-A A A -A

B Ad) CUIA(vivA - 10T LA (L-AD/(A -a] 0 2 g2m) g
1 3 2 1 5 1 5

where .

2,1/(2+n) r

) (19)

A -1
r= Kn (po/Eoto

Equations (16)-(19) form the closed form parametric solution for the
family of (u)-characteristics or particle lines behind a self-similar blast

wave. .

IV. (u % a)-Characteristics

According to the definitions of the (u % a);éharacteristics, we have

d+r
~——-=u*xa . (20)
dt

Thus, from the self-similar solution, Egs. (1)-(7), it may be demonstrated

that,

—z u'f % [Yp'g/(p'h)]l/2

1

[U/(y+1)] = {2A 0y (0) * [2y(y-1) g(/mm1? (21)



where g(4), h(d), y(4) are given by Egs. (1) and (2), and the shock speed U

by Eq. (10).

Therefore, from Egs. (1), (2), (10), (11), and (21), and after con-

siderable manipulation, it is found that,
d log t = G(0) a4, (22)
where ,
G(1) = (d log y/du) * {[u - 2/(2+n)] %
[y(v-1)(2 - 26 - nd)/2(2v& + nyd - 20172 < 5} (23)

The expression d log y/dl in G(Q) is known and given by Eq. (13). Therefore,
G(1) may be reduced to an algebraic function involving square roats of second
degree polynomials of U as radicals. This means that Eqs. (22) can be inte-

grated in terms of elementary, albeit transcendental, functions. The results

are:

log £ = X, + log |A8/(1 - AD)] =
/) s (/e - D - /a2 - 077 L e

where,
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Equafions (24) and the parametric expression for (v, t, 1) given by
Eq. (18) form the closed form parametric solutions for the two families of
(u * a)-characteristics in the dimensionless r-t plane. The constant Ki in
Egs. (24) must be evaluated for each characteristic from a set of known values

of (v, £, 1).

V. Calculational Results

Table I contains the values of the constants Al’ A vee s A9 of Eqs. (4),

X
o, Bl, B> B, of Egs. (17), and k, £, m of Egs. (25), as well as the values
of Kn as determined by Eq. (7) for n = 1,2,3 and vy = 5/3+.

Figure 1 displays a tyﬁical set of solution curves expressing the dimen-
sionless time t as functions of the dimensionless distance ¥ for n=3 and y=5/3.
The terminating curve A is the path of the front of the blast wave. Behind A,
there are three families of characteristics: (1) the solid curves are the
(u)-characteristics or particle lines of Sec. III; (2) the dashed curves are the
(uta)-characteristics; and (3) the dot-dashed curves are the (u-a)-characteris-
tics. As expected, if one's attention is fixed upon a particular point where
curves of all three familiés intersect (such as the point labelled B in Fig. 1),

t

one recognizes the familiar fact  that the angle between the (uta)- and (u-a)-

characteristics is bisected by the particle line.

TThe evaluation of these constants is quite straightforward with the ex-
ception of Kn which requires the calculation of integrals whése integrands con-
tain poles at the lower limits of the ranges of integration. The authors shall
be glad to supply the values of’Kn as well as other constants for other values
of v.

++See, e.g., Courant & FriedrichsS.
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Appendix

Group Theoretical Discussion Leading

to the Self-Similar Solution

The basic differential equations describing the nonisentropic

(particle isentropic) flow of an ideal gas behind a blast wave may be
written as:

¢i(ur, U, U5 Ps Pis P3P

I,,pt,p;r,’c)=0 s

(i=1,2,3) ’, (A1)
where
¢, Lou +uw +o + (n-llou/r (a2a)
¢, Loun +pu +p, (A2b)
¢, A o‘(upr + pt) - yplup , + o) s (A2¢)

and subscripts denote partial differentiation.

Consider a one-parameter continuous group of transformations defined by

(r, ©) = %, 2P (A3a)

(3, p, ) = (8%, 2%, 2%, (A3b)

and therefore,
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A Tp ., AT T ), (A4)

where A is the only parameter, and (a, b, ¢, d, e) are constants. The
- requirement of invariance of the basic differential equations (Al) and
(A2) under this group will determine the choice of these constants. It

can be shown that the transformed functions

i

(i =1, 2, 3) , (A5)
will be proportional to the original‘¢i's if we require that
c=ath , e=4d - 2(atb) . (AB)

The result is:

~2a-b+d d-a i A~2a—b+2d¢ ) . (A7)

(al, 3523 63) = 3

i
N
fag
©-

Thus, the ¢i's are conformal invariants and the bagic differential equations,
(A1) and (A2), become invariant under the group Aefined by Egqs. (A3), (Au),
and (A6).

According to a theorem by Morgan6, if a system of M(21) partial differen-
tial equations with M dependent variables and N(2Z2) independent variables is
invariant under a one-parameter continuous group of transformations of the

dependent and independent variables, then the "invariant" solutions of this



12

system of equations under the group (enlarged to include the transformation

of the partial derivatives) can be expressed in terms of the solutions of a
system of M differential equations with Mldependent variables (Fi, i=l, ..., M)
and (N-1) independent variables (Ej, j=1, ..., N-1). 1In the above, the Fi's
are absolute invariants under the transformation group and Ej's are the (N-1)
functionally independent invariants of the subgroup of transformations of the
original independent variables. In the present case, M=3 and N=2; thus, it is
expected that there exists a class of solutions to Egqs. (Al) and (A2) in terms
of three functiomns, Fi(E), (i =1, 2, 3), of an absolute invariant £ of the
transformation group defined by Eq. (A3a). The Fi's, at least in class C!,

are invariants under Eqs. (A3) and (A6). It is straightforward to verify that,

E = rta/b R (A8)

and

a, (aa1+a+b)/b

FI(E) =r 't cu
a, (aa2+d)/b )
F,(8) =7 "t *P (A9)
a, (aa3+d—2a—2b)/b
Fs(a) =r 't *p

are such invariants. The values of (al, a,s a3) are arbitrary counstants.
Without loss of generality, the Fi‘s in (A9) has been chosen such that each

contains only one of the original dependent variables, (u, p, p).



13

From Egs. (A8) and (A9), it is concluded that there exists a class

of self-similar solutions to Egs. (Al) and (A2) of the form:

-8, -(aa1+a+b)/b
u=r 't : . Fl(g) s

-a, —(aa2+d)/b
p=r t . FZ(E) R (A10)

&, —(aa3+d~2a—2b)/b
p = t . F3(€) 2

where & is given by Eq. (A8). For a blast wave with zero ambient pressure,
the energy integral given by Eq. (7) is a constant. This condition can be

satisfied by the self-similar solution, (Al0), if and only if:

(1) & = constant at the shock, and

(A11)
(2) a/b = -2/(24n) .
Thus, at the shock (i.e., at r=R), .
g = re /2R Lo (A12)
where C is a constant. Therefore, for a self—similariblaét wave ,
R = c ¢/ (2P (A13)

The similarity parameter £ may be replaced by a dimensionless parameter

y defined as follows:

y = I'/R =‘C"lr‘_t"2/(2+n) , (Al”’)
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where,

)l/(2+n)

C = Kn(Bo/po ) (A15)

and Kn is a dimensionless constant.
The above completes the general formulation of the self-similar, blast
wave solution. It is noted that there remain five free constants,

(a, a;, a,, a d), which may be assigned arbitrary values. For the special

35

choice of
(a, ay, 8y, a5, d) = (2, -1, -2, 0, -2n) R (Als)

the similarity transformation defined by Egqs. (A9) in terms of the new

parameter y becomes:

Fl(y) = ut/r |,
Fz(y) = pt2/r?2 (A17)
F3(y) =p .

These are essentially the transformations used in Refs. 3 and 4. While values

of (a, a, a,,a d) other than those of (Al6) may be chosen, it can be

3°

demonstrated that Egs. (A9) cannot be made any simpler than those of (Al7).
It should be noted that if the perfect gas assumption in ¢, of (A2c)

is replaced by one containing ionization and dissociation, or if the boundary

conditions of (55 for zero ambient pressure is replaced by those for finite

ambient pressure (i.e., for shock of finite strength), the group property

leading to the self-similar solution such as those given by (Al17) will be
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lost. Nevertheless, it should always be challenging to investigate problems
in mathematical physics which admit invariant self-similar solutions under
continuous groups of transformations, particularly when the solutions may be

expressed in closed forms such as those described in this paper.
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Caption of Figure

Figure 1  Curved Characteristics Behind a Strong Blast Wave for

n=3, y=5/3.
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